
Introduction to Cocoa

Session 300

Introduction to Cocoa

Heather Hickman
Cocoa Evangelist

Introduction
•Cocoa is a powerful, full-featured, easy-to-use,
object-oriented framework for Mac OS X
development

•Rapid development and increased productivity
•Fastest way to full-featured applications
for Mac OS X

Cocoa

OpenGLOpenGLQuartzQuartz QuickTimeQuickTime

DarwinDarwin

AquaAqua

ClassicClassic JavaJava CarbonCarbon CocoaCocoa

OpenGLQuartz QuickTime

Darwin

Aqua

Classic Java Carbon CocoaCocoa

What You’ll Learn
•What makes Cocoa unique
•What is this language called Objective-C?
•A quick stroll through the class hierarchy
and key concepts

•Resources for learning and becoming more
productive using Cocoa

CodeWarrior v8.0

Matt Henderson
Technical Lead Mac OS Tools

Metrowerks

CodeWarrior and Cocoa
•Build Cocoa-based Software with CodeWarrior
for Mac OS, v8.0
• Metrowerks C/C++ compiler has supported
Objective-C since 1998
• CodeWarrior IDE 5.0 supports long file names
• CodeWarrior IDE 5.0 integrates with
Interface Builder

CodeWarrior and Cocoa
Demonstration

Hall 2
Tues., 12:30pm

Hall 2
Tues., 12:30pm

003 Metrowerks Lunch Presentation

Hall 2
Tues., 7:30pm

Hall 2
Tues., 7:30pm

CodeWarrior Birds of a Feather

Hilton Plaza Room
8:00am–6:00pm
Hilton Plaza Room
8:00am–6:00pm

CodeWarrior Lounge
Open all week

Roadmap

Hall 1
Mon., 5:00pm–8:00pm

Hall 1
Mon., 5:00pm–8:00pm

Metrowerks Booth

Project Builder

Mike Ferris
Manager, Project Builder Team

Project Builder—Cocoa Story
•Project Builder is made up of many “products”

• The application
• Frameworks
• Plug-in bundles
• Command-line tools, scripts

•Built by a total of 7 Project Builder projects
• Layered and split along lines of functionality

The Main Projects That Build PB
•pbx_jamfiles: 5K lines of jam code
•toolsupport: 16K lines of Obj-C
•pbxbase: 70K lines of Obj-C (and a little C++)
•pbxide: 140K lines of Obj-C
•pbxdocviewer: 8K lines of Obj-C
•pbxprojectimporters: 3K lines of Obj-C

A Place to Stand
•NSWindowController
•NSDocument
•NSTextView / NSTextStorage
•NSTableView / NSOutlineView
•NSSplitView
•Key-value Coding / Property Lists

Roadmap
Hall 2

Wed., 5:00pm
Hall 2

Wed., 5:00pm

903 Exploring the Project Builder IDE

Hall 2
Fri., 2:00pm

Hall 2
Fri., 2:00pm

908 Delivering With Project Builder

Civic
Wed., 3:30pm

Civic
Wed., 3:30pm

902 AppleScript Studio Intro

iDVD2

Freddie Geier
Senior Director, New Media Engineering

Why Cocoa

QuickTime

Adrian Baerlocher
 QuickTime Engineering

QuickTime Broadcaster
•Cocoa application using QuickTime
•Classes encapsulate QuickTime
functional groups
• Sequence Grabber
• Standard Compression
• Broadcast APIs

QuickTime Broadcaster

Roadmap
Room A2

Wed., 9:00am
Room A2

Wed., 9:00am

600 The State of QuickTime in 2002

Room A2
Wed., 10:30am

Room A2
Wed., 10:30am

601 Building QuickTime-Savvy Apps

Room G
Tues. thru Fri.
1:00pm–4:00pm

Room G
Tues. thru Fri.
1:00pm–4:00pm

Hands on With the QuickTime
Engineers

Introduction to Cocoa

Matthew Formica
Cocoa DTS Engineer

Full Featured

The Cocoa Hierarchy

User Interface

Text

Graphics

Document Support

Printing

OS Services

Value Objects

Strings

Collections

OS Services

Archiving/Serialization

Scripting

Application KitFoundation

NSObject

(in Foundation)

Foundation

•Non-GUI
•Basic Data
Structures

•Networking
•File System
•Scripting
•Accessibility
•And More!

AppKit

•GUI Widgets
•Text System
•Drawing
•Documents
•Printing
•And More!

Which Language to Use?
•Cocoa APIs are in Objective-C (ObjC) and Java
•You can plug your C and C++ code into
ObjC as well

•Use the language that fits your needs
•We’ll focus on ObjC today

Quick Overview of Objective-C
•Small superset of C

• ANSI C
• Some additional syntax
• A few additional types

•Dynamic object runtime

int i;

for (i=0; i<5; i++)

{

printf(“Hello, World!\n”);

}

Quick Overview of Objective-C
•Valid Objective-C (ObjC) code!

Weak Typing
•Objective-C determines dynamically at runtime
what class a given object is!

•Generic “id” object type can refer to an object
of any class

•Even typed objects can point to objects of other
classes at compile-time/runtime (only warnings
are produced)

For example…

[myObject doSomething];

Unique Messaging Syntax

What is happening here?
•It’s a message being sent, not a function being called
•Messaging nil is a no-op
•Watch out for misspellings of method names—or you
won’t be able to respond to the right messages!

object message

Unique Messaging Syntax

“doWithThis:” and “doWithThis:andThis:” are called selectors,
identifying which message will be sent to a receiver

For example… with named parameters

[myObject doWithThis: otherObj];

object message parameter

[myObject doWithThis: object1 andThis: object2];

object Msg-part1 parm1 Msg-part2 parm2

Class Definitions
#import <Cocoa/Cocoa.h> //like #include with #pragma once

//MyClass inherits from NSObject

@interface MyClass : NSObject

{

int someValue;

BOOL someFlag;

NSString * theString;

}

+ (void) initializeSomething;

- (int) doSomething:(id)sender;

@end

Class Implementation
#import “MyClass.h”

@implementation MyClass

- (int) doSomething:(id)sender

{

someFlag=YES;

someValue=[self privateMethod]+[super doSomething:sender];

}

//methods don’t have to be declared in the header!

- (int) privateMethod { }

@end

More on ObjC
Categories

•A category let you add methods to an
existing class

•Instance variables can not be added
•At runtime, the methods are just as much a
part of the class as any other method defined
on the class is

More on ObjC

•Protocols declare methods not associated with a
class, but which a class, or classes, can choose to
implement to conform to the protocol

•If you claim to conform to a protocol, and don’t,
it’s a compile time error

•Protocols effectively group objects by
functionality, not class

Protocols

“Informal Protocols”

More on ObjC

•They are categories, really
•No compiler error
•Help group functionality

Foundation Framework

•NSObject
•Memory Management
•Focus: NSString
•Focus: NSArray
•Focus: NSTask

Generally the “non-GUI” portion of Cocoa

NSObject

•Provides essential infrastructure methods like:
+ (id)alloc, - (id)init

- (BOOL) respondsToSelector:(SEL)aSelector

- (Class)class

+ (NSString *)description

Root of the Cocoa Class Hierarchy

Memory Management

•Cocoa uses reference counting
• retain adds a reference, release decrements it,
and autorelease decrements it “later”

•The rules are simple:
• Only creation methods (alloc, copy, new)
return retained objects
• retain to keep an object around
• release when you are done with it
• When there are no references, the object is
deallocated

In a nutshell

Memory Management

•Managing the retain count

Example

// We call alloc, so myString is implicitly retained

myString = [[NSString alloc] initWithFormat:@“%d”,100];

NSLog(myString);

// deallocate the memory for myString

[myString release];

Focus: NSString

Foundation Framework

•Opaque string class for use instead of char*

•“toll-free” bridged to CFStringRef
•Provides string manipulation methods and
full Unicode support

•Use the @ “…” construct to refer to a
constant string in-code

•Use NSMutableString if you are changing
a string as you go

Foundation Framework
Focus: NSString—Examples

NSString *someString = @“World!”;

NSLog(@“Hello %@”,someString);

NSLog(@“The length of the string is %d”,

[someString length]);

Focus: NSArray

Foundation Framework

•Provides optimized “expanding” array support
•Takes NSObject subclasses only—but multiple
types are allowed in one array

•Use with NSEnumerator or objectAtIndex:
•NSArrays retain their elements (and release
on element removal), so you do not have to

•Use NSMutableArray if you are changing
it as you go

Foundation Framework

•Launch other processes
•Interact through NSPipes with stdin,
stdout, stderr

•Wrap a command-line tool or shell script
in a Cocoa GUI

Focus: NSTask

Foundation Framework
Focus: NSTask—Example

NSPipe *outPipe;

NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/ls”];

[task setArguments:[NSArray arrayWithObjects:@”-la”,

 @“/usr/bin”,nil]];

outPipe = [[NSPipe alloc] init];

[task setStandardOutput:outPipe];

[task launch];

Foundation Framework
Focus: NSTask—Example

NSPipe *outPipe;

NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/ls”];

[task setArguments:[NSArray arrayWithObjects:@”-la”,

 @“/usr/bin”,nil]];

outPipe = [[NSPipe alloc] init];

[task setStandardOutput:outPipe];

[task launch];

Foundation Framework
Focus: NSTask—Example

NSPipe *outPipe;

NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@”/bin/ls”];

[task setArguments:[NSArray arrayWithObjects:@”-la”,

 @“/usr/bin”,nil]];

outPipe = [[NSPipe alloc] init];

[task setStandardOutput:outPipe];

[task launch];

AppKit

•Model-View-Controller (MVC)
•Provides application-level services
•Powerful and sophisticated text
 and drawing systems
•Infrastructure for events
•Controls

The parts of your app you can see

AppKit

•A standard design pattern leveraged by Cocoa

•Enhances code factorization, encapsulation,
and reuse

Organizing your application: Model-View-Controller

The Model is your backend data
The View is your AppKit-based front end
The Controller is your custom class that
ties the two together

AppKit

•Handled by NSApplication via the global
NSApp object

• NSApp does a lot of work for you
•Message NSApp to do application-level tasks

Application-level services

AppKit
Application-level services example

if ([NSApp isHidden])

[NSApp setApplicationIconImage:anImage];

else

[NSApp hideOtherApplications:self];

Text System

AppKit

•A complete, international, rich text editing
solution in a drag-and-drop widget

•Automatic support for fonts, images, colors,
cut/copy/paste, spell checking, printing, rulers,
and more is built right in!

•NSTextView is the front end for a bunch of
interlocking text classes

•A lot of power, complexity, and customization
is there, but only if you need it

AppKit

•NSBezierPath—lineToPoint, curveToPoint
•NSImage—drawAtPoint

•NSString, NSAttributedString—drawAtPoint

•NSColor, NSFont—set

•NSAffineTransform—set, concat
•NSGraphicsContext—graphicsPort

•CoreGraphics (Quartz) routines can also be used

Drawing

AppKit

•NSApplication handles events
•Events get funneled to the focused NSResponder
subclass—the “first responder”

•The first responder can/will automatically change

Event System

AppKit

•If the first responder doesn’t respond to an
event, the event is sent up the “responder chain”
until an object is found that responds

•You can send actions to the first responder via
“target/action” and targeting the first responder

•The dynamic nature of this system allows the
responder chain to reconfigure itself on the fly

Event System—Part 2

Controls

AppKit

•Controls typically have an action—a message
that will be sent when the control is triggered

•Controls also have a target—the recipient
object of the message

•NSButton, and NSMenuItem for example

Back to the first responder

AppKit

•The target can be determined on the fly!
•Cut/Copy/Paste work this way
•Menu items autoenable/disable

Focus: NSTableView

AppKit

•Similar to Carbon’s DataBrowser control
•NSTableView does not hold its own data—
it asks its data source object for cell content

•NSTableView handles all the drawing
•Data source objects should adopt the
NSTableDataSource informal protocol

Focus: NSTableView—NSTableDataSource Methods

-(int)numberOfRowsInTableView:(NSTableView *)tableView

-(id)tableView:(NSTableView *)tableView
objectValueForTableColumn:(NSTableColumn *)tableColumn

row:(int)row;

AppKit

•Two methods for a display-only table

Focus: NSTableView—NSTableDataSource Methods

-(void)tableView:(NSTableView *)tableView
setObjectValue:(id)object

forTableColumn:(NSTableColumn *)tableColumn

row:(int)row;

AppKit

•One more method to make the table editable

Demo
Matthew Formica
Cocoa DTS Engineer

MP3 Player

Documentation

Matt Rollefson
Technical Publications

Documentation > Cocoa
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Documentation

•Lots of content
•Reference API
complete for 10.1

•More conceptual
material on the way

Cocoa

Documentation Access

Announcing…

Roadmap
Civic

Tues., 9:00am
Civic

Tues., 9:00am

301 Cocoa: What’s New

Hall 2
Thurs., 9:00am

Hall 2
Thurs., 9:00am

302 Cocoa API Techniques:

Understanding, leveraging, and extending

Room A2
Thurs., 10:30am

Room A2
Thurs., 10:30am

303 Cocoa Scripting:

Scripting overview and recent changes

Room A2
Thurs., 5:00pm

Room A2
Thurs., 5:00pm

304 Cocoa Controls and Accessibility:

Overview of controls; new Accessibility APIs

Roadmap (Cont.)
Hall 2

Fri., 10:30am
Hall 2

Fri., 10:30am

305 Cocoa Drawing:
2D graphics in Cocoa: Images, bezier paths,…

Room J
Fri., 2:00pm
Room J

Fri., 2:00pm

306 Cocoa Text:

In-depth overview of the text system

Room A1
Fri., 5:00pm
Room A1

Fri., 5:00pm

FF016 Cocoa Feedback Forum:
Comments and suggestions for Cocoa

Who to Contact
Heather Hickman
Cocoa Evangelist
hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information
•O’Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

•Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

•Apple Customer Training
 http://train.apple.com/

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

